El Álgebra de Boole ´ es un sistema matemático que utiliza
variables y operadores l´ogicos. Las variables pueden valer 0
´o 1. Y las operaciones b´asicas son OR(+) y AND(·).
Luego se definen las expresiones de conmutaci´on como un
n´umero finito de variables y constantes, relacionadas mediante
los operadores (AND y OR).
En la ausencia de par´entesis, se utilizan las mismas reglas de
precedencia, que tienen los operadores suma (OR) y
multiplicaci´on (AND) en el ´álgebra normal.
Leyes Conmutativas
A+B=B+A
Leyes Asociativas
A+(B+C)=(A+B) /C
Ley Distributiva
AB+AC= A(B+C)
EJEMPLOS.
1+0=1
1*0=0
A+0=A
A*1=A
A+A=1
1+1=1
1*1=1
A+1=1
A*0=0
A*A=A
A*-A=0
A(A+B)=A